Pharmacological stimulation of GAL1R but not GAL2R attenuates kainic acid-induced neuronal cell death in the rat hippocampus
نویسندگان
چکیده
The neuropeptide galanin is widely distributed in the central and peripheral nervous systems and part of a bigger family of bioactive peptides. Galanin exerts its biological activity through three G-protein coupled receptor subtypes, GAL1-3R. Throughout the last 20years, data has accumulated that galanin can have a neuroprotective effect presumably mediated through the activation of GAL1R and GAL2R. In order to test the pharmaceutical potential of galanin receptor subtype selective ligands to inhibit excitotoxic cell death, the GAL1R selective ligand M617 and the GAL2R selective ligand M1145 were compared to the novel GAL1/2R ligand M1154, in their ability to reduce the excitotoxic effects of intracerebroventricular injected kainate acid in rats. The peptide ligands were evaluated in vitro for their binding preference in a competitive (125)I-galanin receptor subtype binding assay, and G-protein signaling was evaluated using both classical signaling and a label-free real-time technique. Even though there was no significant difference in the time course or severity of the kainic acid induced epileptic behavior in vivo, administration of either M617 or M1154 before kainic acid administration significantly attenuated the neuronal cell death in the hippocampus. Our results indicate the potential therapeutic value of agonists selective for GAL1R in the prevention of neuronal cell death.
منابع مشابه
Bupropion attenuates kainic acid-induced seizures and neuronal cell death in rat hippocampus.
Excessive release of glutamate is believed to be a major component of cell damage following excitotoxicity associated with epilepsy. Bupropion, an atypical antidepressant, has been shown to inhibit glutamate release from rat cerebrocortical nerve terminals. The present study was undertaken to investigate whether bupropion has anti-seizure and anti-excitotoxic effects by using a kainic acid (KA)...
متن کاملThe effect of silymarin on prevention of hippocampus neuronal damage in rats with temporal lob epilepsy
Background and Objective: Temporal lobe epilepsy is hallmarked with neuronal degeneration in some areas of hippocampus and mossy fiber sprouting in dentate area. Considering some evidences on neuroprotective and antioxidant activity of silymarin (SM), this study was undertaken to evaluate the preventive effect of this agent on structural changes in hippocampus of kainate-epileptic rats. Materia...
متن کاملHuman chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density
Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...
متن کاملThe Effect of Alpha-Lipoic Acid on Learning and Memory Deficit in a Rat Model of Temporal Lobe Epilepsy
Introduction: Epilepsy is a chronic neurological disorder in which patients experience spontaneous recurrent seizures and deficiency in learning and memory. Although the most commonly recommended therapy is drug treatment, some patients do not achieve adequate control of their seizures on existing drugs. New medications with novel mechanisms of action are needed to help those patients whose sei...
متن کاملThe effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat
Background: Prenatal intoxication with trimethyletin (TMT) induces widespread neuronal death in the central nervous system by inducing oxidative stress. The aim of this study was to evaluate the antioxidant effect of gallic acid (GA) on the neuronal density of the entorhinal cortex, hippocampal pyramidal cells and oxidative stress parameters in the fetal forebrain following TMT intoxication. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuropeptides
دوره 58 شماره
صفحات -
تاریخ انتشار 2016